Homomorphism :-

\nLet
$$
(G,*)
$$
 and $(H,0)$ be groups of the G .

\n $f: G \rightarrow H$ is a homomorphism $if * a, b \in G$.

\n $f: G \rightarrow H$ is a homomorphism $if * a, b \in G$.

\n $f(a * b) = f(a) \circ f(b)$

\nFrom the CH and CH .

\nThus, $G \cong H$.

\nThus, $G \cong$

$$
f(nb) = f(a) f(b)
$$

 $f(a, a_2 a_3 \cdot a_n) = f(a_1) f(a_2) \cdot\cdot\cdot f(a_n)$

Theorem :- Let
$$
f:(G,*) \rightarrow (H,0)
$$
 be a homomorphism
\n(i) $f(e) = e^{t}$, where e^{t} is the identity f^{+}
\n(ii) $f(e) = e^{t}$, where e^{t} is the identity f^{+}
\n(i) $f(e) = e^{t}$, where e^{t} is the identity $f^{+}(a)$

$$
f(nb^{-1}) = f(n) f(b)^{-1} \Rightarrow b \text{ prove homomorphism}
$$
\n
$$
f(nb^{-1}) = f(n) f(b)^{-1} \Rightarrow b \text{ prove homomorphism}
$$
\n
$$
f(x \to y) be a bijection on x, y and x be a b. Show that a b \to f(b \to b)
$$
\n
$$
f(x \to y) be a bijection on x, y and x be a b. Show that a b \to f(b \to b)
$$
\n
$$
f(x \to y) be a bijection on x, y by a b. Show that a b \to f(b \to b)
$$
\n
$$
f(x \to y) be a bijection on x, y by a b. Show that a b \to f(b \to b)
$$
\n
$$
f(x \to y) be a bijection on x, y by a b. Show that a b \to f(b \to b)
$$
\n
$$
f(x \to y) be a bijection on x, y by a b. Show that a b \to f(b \to b)
$$
\n
$$
f(x \to y) be a bijection on x, y by a b. Show that a b \to f(b \to b)
$$
\n
$$
f(x \to y) be a bijection on x, y by a b. Show that a b \to f(b \to b)
$$
\n
$$
f(x \to y) be a bijection on x, y by a b. Show that a b \to f(b \to b)
$$
\n
$$
f(x \to y) be a bijection on x, y by a b. Show that a b \to f(b \to b)
$$
\n
$$
f(x \to y) be a bijection on x, y by a b. Show that a b \to f(b \to b)
$$
\n
$$
f(x \to y) be a bijection on x, y by a b. Show that a b \to f(b \to b)
$$
\n
$$
f(x \to y) be a bijection on x, y by a b. Show that a b \to f(b \to b)
$$
\n
$$
f(x \to y) be a bijection on x, y by a b. Show that a b \to f(b \to f(b \to b)
$$
\n
$$
f(x \to y) be a bij
$$
\n
$$
f(x \to y) be a bij
$$
\n
$$
f(x \to y) be a bij
$$
\n
$$
f(x \to y) be a bij
$$
\n
$$
f(x \to y) be a bij
$$

Q) Let G be a group and X be a set and f.
$$
0 \rightarrow x
$$
 be a
bijethor Show that there is a unique operation on X so
that X is a group and f isomorphism

$$
\begin{array}{lll}\n\lambda w & - & |G_{1}| = |X| \\
\lambda w & - & \lambda \\
\lambda w & - & \lambda\n\end{array}\n\quad\n\begin{array}{lll}\n\lambda & - & \lambda \\
\lambda & \lambda \\
\lambda & \lambda\n\end{array}\n\quad\n\begin{array}{lll}\n\lambda & - & \lambda \\
\lambda & \lambda\n\end{array}\n\quad\n\begin{array}{lll}\n\lambda & - & - & \lambda \\
\lambda & \lambda\n\end{array}\n\quad\n\begin{array}{lll}\n\lambda & \lambda \\
\lambda & \lambda\n\end{array}\n\quad\n\begin{array}{lll}\n\lambda & \lambda \\
\lambda & \lambda\n\end{array}\n\quad\n\begin{array}{lll}\n\lambda & \lambda\n\
$$

Sappose content equation exists,
$$
0 + i + be
$$
 9
for $1 \le i \le 1$ use $u \cup x^2$ four $f(0, i *0i) \neq 0$? 9
for $1 \le i \le 1$ use $u \cup x^2$ four $f(0, i *0i) \neq f(0i)$ of $(0, i)$
 $f(u_i) = x$ $\qquad \qquad \int (0, i *0i) \neq f(0i) \neq f(0i)$

$$
Q
$$
 for any elements a, b in a graph and any integer n,
Prove that $(a^+ba)^n = a^+b^n$ a
Prove that $(a^+ba)^n = a^{-1}b^n$ a

$$
Au^1 = (a^+ba)^n = a^{-1}ba a^{-1}b^n - a^{-1}ba = a^{-1}b^n
$$

$$
Q
$$
 Prove that if $(a b)^2 = a^2 b^2$ than $ab = ba$, a,bcG
Ans. - $(ab)^2 = abab = acbb$

Ans - $(ab)^2 = ab \circ b = a \circ bb$ $b^{\alpha} = \alpha^{\beta}$ O) Let G de a group of eractly 4 demants Provental G is obclion $eb = b = be$ $2\alpha = \alpha = \alpha$ e $\lim_{\Delta u \to 0} e_0$ a, b, c $ec = C = CC$ Sall pour commete W^{L00y} c = ab ex ba but ab , $ba \in G$ \Rightarrow $ab = b$ ∞ S Abelion I and G has 4 clements only $ab = a$
 $ab = a$
 $ab = b$
 $ab = c$ $\tan \theta$
 $bc = a$

$$
Q>\begin{array}{l}\n\text{If }G\text{ is a multiple cubic}}\\
\text{when }Q\text{ is a multiple cubic}}\n\end{array}
$$

$$
\lim_{h \to \infty} A \rightarrow \ln(a) \Rightarrow \text{one}-\text{one}
$$
\n
$$
(\ln)^{-1}(b) \in G \Rightarrow \text{out} \Rightarrow \text{bij} \text{eehon}
$$
\n
$$
(\ln)^{-1}(b) \in G \Rightarrow \text{out} \Rightarrow \text{beas} \text{usepbin}
$$
\n
$$
\text{in} (ab) = \ln(a) + \ln(b) \Rightarrow \text{beas} \text{usepbin}
$$

$$
8 > Prove
$$
 that a group G is abelian iff the fraction
\n $f:G \rightarrow G$ through by $f(a) = a^{-1}$ is a homomorphism
\n $lim := Suppose G is obtained$

$$
lim_{ab \to a} Supp_{ab} = b \propto A \propto b \in G
$$
\n
$$
f(ab) = (ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1} = f(a) + (b)
$$
\n
$$
Supp_{ab} \text{, } f(a) = a^{-1} \text{ is homomorphism}
$$
\n
$$
f(ab) = f(a) + (b) \Rightarrow (ab)^{-1} = a^{-1}b^{-1} \Rightarrow (ab)^{-1} = (ba)^{-1}
$$
\n
$$
f(ab) = f(a) + (b) \Rightarrow (ab)^{-1} = a^{-1}b^{-1} \Rightarrow (ab)^{-1} = (ba)^{-1}
$$